$$
\begin{aligned}
& V_{f}=V_{0}+a t \\
& \Delta x=\frac{1}{2} a t^{2}+V_{0} t \\
& V_{f}^{V_{0}}=V_{0}^{-V_{0}}+a t \quad \Delta x=\frac{1}{2} a t^{2}+V_{0} t_{t} \\
& \frac{V_{f}-V_{0}}{a}=\frac{a t}{a} 2 \cdot \Delta x=\left[\frac{1}{2} a\left(\frac{V_{f}-V_{0}}{a}\right)^{2}+V_{0}\left(\frac{V_{f}-V_{0}}{a}\right)\right] \\
& t=\left(\frac{V_{f}-V_{0}}{a}\right) 2 \Delta x=a\left(\frac{V_{f}-V_{0}}{a}\right)^{2}+2 V_{0}\left(\frac{V_{f}-V_{s}}{a}\right) \\
& 2 \Delta x=X \frac{\left(v_{f}-v_{0}\right)\left(V_{F}-v_{0}\right)}{a^{x}}+2 v_{0}\left(\frac{v_{f}-v_{0}}{a}\right) \\
& 2 \Delta x=\frac{V_{f}^{2}-2 V V_{s}+Y V_{0}^{2}+2 V_{0} V_{p}-2 V_{0}^{2}}{a} \\
& a \cdot 2 \Delta x=\frac{V_{f}^{2}-V_{0}^{2}}{a} \cdot a \\
& 2 \Delta x a=V_{\delta}^{2}-V_{0}^{2} \text { * } \\
& \text { UV } V_{5}{ }^{2}=V_{0}^{2}+2 a \Delta x{ }_{*}^{*} \\
& V_{f}^{2}=V_{0}^{2}+2 a\left(x_{f}-x_{0}\right)
\end{aligned}
$$

The fuel in a bottle rocket burns for 2 s . While burning, the rocket moves upward with an acceleration of $30 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. What is the vertical distance traveled while the fuel is still burning and how fast is it traveling at the end of the burn?
(1) What is given + what do I mud to find? $t=2 s$
(2) find an equation

$$
a=30 \mathrm{~m} / \mathrm{s}^{2}
$$

$\Delta x=$? 120 m (3) Solve equation for unknown

$$
\begin{aligned}
& V_{Q}=? \\
& V_{0}=0
\end{aligned}
$$

(4) ping in values

$$
\begin{aligned}
& \text { in in values } \\
& \begin{aligned}
\Delta x & =\frac{1}{2} a t^{2} \\
& =\frac{1}{2}\left(30^{n} / s^{2}\right)(2 s)^{2} \\
& =60
\end{aligned}
\end{aligned}
$$

(S)solve
(2) $V_{f}=V_{0}+a t$
(3) $V_{f}=0+\left(30 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s})$
(a)

$$
V_{f}=60 \mathrm{~m} / \mathrm{s}
$$

