Projectile Motion Video: 2 position time graphs

\[X_f = X_0 + V_{0x} t + \frac{1}{2} a_x t^2 \]
Constant velocity in the x direction
NO Acceleration

\[Y_f = Y_0 + V_{0y} t + \frac{1}{2} a_y t^2 \]
Do NOT have a constant velocity
Negative Acceleration
\[|a| = |g| = 9.81 \text{ m/s}^2 \]
It appears that acceleration in the y direction, does not cause acceleration in the x direction.

\[V_{ox} = 3 \text{ m/s} \quad a_x = 0 \]
\[V_{oy} = 4 \text{ m/s} \quad a_y = -10 \text{ m/s}^2 \]

Remember: the acceleration (vector) tells us how much the velocity changes each second.

\[-10 \text{ m/s}^2 \]

 CORE IDEA: 2D problems are really just two separate 1D problems
Example: Throw a rock off a 100m cliff with initial horizontal velocity of 5 m/s

1) How long does it take to hit the ground?
2) How far from the base of the cliff does it hit?

\[V_x = 5 \text{ m/s} \]
\[V_y = 0 \text{ m/s} \]
\[a_x = 0 \]
\[a_y = -10 \text{ m/s}^2 \]
\[X_0 = 0 \text{ m} \]
\[X_f = 100 \text{ m} \]
\[Y_f = 0 \text{ m} \]

Diagram:
- Initial position at (0, 0)
- Final position at (100, 0)
- Vertical displacement is 0

Equations:
1. \[Y_f = Y_0 + V_y t + \frac{1}{2} a_y t^2 \]
 \[0 = 0 + 0 + \frac{1}{2} (-10) t^2 \]
 \[t = \sqrt{\frac{2(100)}{10}} = 4.55 \text{ s} \]

2. \[X_f = X_0 + V_x t + \frac{1}{2} a_x t^2 \]
 \[X_f = 5 \text{ m/s} \times 4.55 \text{ s} = 22.5 \text{ m} \]