$$
\begin{array}{ll}
V=A t & V=\dot{a} t+X_{0}^{7} \\
d=\bar{A} t^{2} & \Delta x=\frac{1}{2} a t^{2}+y_{0} t
\end{array}
$$

For Part fof your Kinematics Lab Conclusion

$$
\bar{V}=\frac{\text { displacement }}{\text { time }}=\frac{X_{f}-X_{0}}{t}
$$

disknee: mils, km, cm sec, min, hr, wake

Average Acceleration: \bar{a}

$$
\begin{aligned}
& \bar{a}=\frac{V_{f}-V_{0}}{t} \\
& \frac{\text { Sped: } \frac{\text { mil }}{h r}, \frac{m}{s}, \frac{\mathrm{~cm}}{\min }}{\text { time: sec, hr, min }} \\
& \qquad \frac{\text { Distinct }}{\frac{\text { Time }}{\frac{\text { Time }}{1}, \frac{1}{T n}}}=\frac{\text { Distance }}{\text { Tin }^{2}}
\end{aligned}
$$

Example:
A Car traveling at $60 \frac{\text { mite }}{h_{r}}$ Stops in 10 seconds:

$$
\text { Acceleration is: }-6 \frac{\mathrm{mils}}{\mathrm{~h} / \mathrm{sec}}
$$

Vectors and signs for a \& V

$$
\xrightarrow[\infty]{\stackrel{\rightharpoonup}{a}=-2 \mathrm{~m} / \mathrm{s}^{2}}=-2 \mathrm{~m} / \mathrm{s},
$$

Acceleration tells us how much to change The velocity each serond

