$$
\begin{aligned}
& 5 \mathrm{~kg} \xrightarrow[\mathrm{Fm}]{\mathrm{Fo}}
\end{aligned}
$$

$$
\begin{aligned}
& b / c \sum F_{x}=F_{M}+F_{p x} \\
& =3 N+4 N \cos 30 \\
& d / c \quad a_{x}=\frac{\sum F_{x}}{m} \\
& \sum F_{y}=F_{p y} \\
& f / g \sum F \\
& \xrightarrow{2 F-7 F y} \\
& \rightarrow \frac{c^{2}}{\sum F^{2}}=\sqrt{\sum}=\sqrt{\sum F_{x} F_{x}^{2}+b^{2}} \\
& a_{y}=\frac{\sum F_{y}}{m} \\
& \text { a } \\
& a=\frac{\sum^{F}}{m} \\
& \Sigma F=\sqrt{\Sigma F_{x}^{2}+\Sigma F_{0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tan} \theta=\frac{\sum F_{y}}{\sum F_{x}} \\
& \theta=\operatorname{Tan}^{-1}\left(\frac{\sum F_{y}}{\sum F_{v}}\right)
\end{aligned}
$$

Find F_{T}, a accelerations ane the same Tilt the FBD Frs an the

$$
\begin{gathered}
a_{x}=a=\frac{\sum F_{x}}{m_{2}} \\
\underline{a}=-\frac{F_{g x}+F_{T}}{m_{2}} \\
a=\frac{-(4)(10) \sin (10)+F_{+}}{4}
\end{gathered}
$$

$$
\begin{aligned}
& a=\frac{\overline{F_{1}}}{m_{1}}+\left(-F_{I}\right) \\
& \Delta=\frac{F_{S_{1}}}{m_{1}}
\end{aligned}
$$

$$
a=\frac{5 k_{g}(10)-F_{T}}{5}
$$

Set equal to each other

$$
\begin{aligned}
& 4 \cdot 5\left(\frac{-20+F_{T}}{4}\right)=\left(\frac{50-F_{T}}{8}\right) 5 \cdot 4 \\
& -100^{\times 100}+6 F_{T} \stackrel{x y f T}{=} 200^{x 100}-4 F_{T}+44 \\
& 9 F_{T}=300 \\
& F_{T}=\frac{300}{9} \text { ling in to } \mathrm{g}^{t^{a}}
\end{aligned}
$$

