


- 2. Did you adequately indicate a positive direction?
- 3. In your acceleration equations, did you write one for each object?
- 4. In your accel equations, did you include only forces in the direction of motion?
- 5. Did you appropriately find components of forces in the direction you were interested in?
- 6. Did you keep track of signs correctly?
- 7. Did algebra work out ok?

Friction . when Things are sifting . when Things are moving . When Things are moving = kinetic		
How much friction will there be and in what direction relative to the push?	Prediction	Observed
Not moving, no push Not moving $\xrightarrow{F_P}$ Not moving $\xrightarrow{F_P}$ Not moving $\xrightarrow{F_P}$		Force of friction matches our push in the opposite direction
Moving right $\xrightarrow{F_{P}}$ Moving right $\xrightarrow{F_{P}}$ moving right $\xleftarrow{F_{P}}$ moving right \bigwedge		Constant and opposite to motion

November 16, 2015

What happens at the transition between not moving and moving?