Circular Motion
(Constant Speed)

- Position, Velocity, Acceleration (Ford)
Position Vectors

- start at the origin
- Point toward the object
- magnitude of the arrow = distance

In Circles:

$$
\begin{aligned}
& X_{\text {pos }}=|X| \cos \theta \\
& Y_{\text {pos }}=|x| \sin \theta
\end{aligned}
$$

In Circular Motion with constant Velocity"

- The Velocity points tangent to the curve (along the circle)
- The acceleration points words the center of

The circle.
Velocity and acceleration are constantly changing (direction) while speed remains constant
 you have clone this before in projectile motion
But now acceleration is always changing

$$
\begin{aligned}
& \text { Angular Velocity: } \\
& \omega=\frac{\Delta \text { angle }}{\Delta \text { time }}=\frac{\Delta \theta}{\Delta t} \text { anguly on an } \begin{array}{c}
\text { only when } \\
\text { is zero }
\end{array} \\
& \text { omega units: } \frac{\text { dequeues }}{\text { Second }}=\frac{\text { radians }}{\text { Second }} \\
& 360^{\circ}=2 \pi \text { radians } \\
& V=\frac{d}{t} \text { - only when acceleration } \\
& \text { Period - Time for } 1 \text { cycle } \\
& \begin{array}{l}
T=\frac{\text { Time }}{\text { cycle }} \\
t \quad\left(F_{T}=\text { Fornaftension }\right)
\end{array} \\
& \operatorname{col}_{\text {andylsm }}^{\sim} \omega \cdot T_{\text {Period }}=2 \pi \\
& T=\frac{2 \pi}{\omega} \\
& \text { frequency } \\
& \frac{\text { Cychs }}{\text { Tine }}\left(\frac{1^{\circ}}{s}=H_{2}\right) \\
& f=\frac{1}{T}
\end{aligned}
$$

Relate u to V
A iB have the sames
Because B trawls a larger distance in The same time its V must be larger

$$
\begin{aligned}
& V \cdot T=\text { circumfrance } \\
& V \cdot T=2 \pi r \\
& V \cdot \frac{2 \pi}{\omega}=2 \pi r \\
& V=\omega r
\end{aligned}
$$

