

Normal Force
the force produced by a solid object, that prevents acceleration INTO the object

Keeps solid objeds from moving through each other

$$
\begin{aligned}
& a_{x}=0 \\
& a_{x}=\frac{\sum F_{x}}{m}=0 \\
& \Rightarrow \sum F_{x}=0 \\
& F_{\text {push }}+\left(-F_{N}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { ash }+\left(-F_{N}\right)=0 \\
& F_{\text {push }}=F_{N} \quad \text { equal but opposite }
\end{aligned}
$$

What if I stop push on the object e en an gu?

Look in the y direction

$$
\begin{aligned}
& \sum F_{y}=0 \\
& F_{y}+F_{N}+F_{\text {ching }}=0 \\
& F_{y}+F_{\text {posh }}=-F_{N}
\end{aligned}
$$

$$
a_{y}=\frac{\sum F_{y}}{m}=0
$$

$$
\Rightarrow \sum_{\text {Fob }-x} F y=0
$$

Normal force, must be larger then the force of gravity in order to compensate for the added force downward.

Normal forces can only act perpendicular to the surface.

$$
\begin{aligned}
F_{N_{x}} & =0 \\
a_{x} & =\frac{\sum F_{x}}{m} \\
a_{x} & =\frac{F_{y} \sin (30)}{m}
\end{aligned}
$$

$$
F_{g x}=F_{g} \sin (30)
$$

What direction is that?
A long the ramp

