Title
wild guess
Research Question

Hypothesis:

I think, when the object falls, the distance depends on the time in a
\qquad relationship.

Variables: Independent: distance ball bearing rolls on the ramp.

Dependent: time
Controlled: ball bearing,
angle of the ramp
ramp texture
the way we measure distance/
length of ramp
How will you keep controlled variables controlled?
how will you change the independent variable?
how will you measure the dependent variable?
Title:
Wild Guess: It will it take a ball bearing
seconds to roll from the top of the
$\longrightarrow 1.5 \mathrm{c}, 2 \mathrm{~s}, 1.7 \mathrm{~s}, 6 \mathrm{~s}, 3 \mathrm{~s}, 13 \mathrm{~s}$

Research Question: What is the pattern of motion for objects pulled by gravity?

Hypothesis:

think, when the object falls, the distance it falls depends on time in a \qquad relationship.

Variables: Independent: Distance ball bearing rolls on the ramp.

Dependent: Time
Controlled: Ball bearing
Ramp: material
angle of the ramp
measurement system and increments
the persons and the jobs
How will you keep the controlled variables controlled? How will you change the independent variable? How will you measure the dependent variable?

Title:

Wild guess: It will take__ seconds for the ball period bearing to roll from thettop of a cabinet to the ground on 2 ramps.

$$
6 s, 2 s, 4 \mathrm{~s}, 1 \mathrm{~s}, 3 \mathrm{~s}, 2.5 \mathrm{~s}, 2.75
$$

Research Question: What is the pattern of motion for objects pulled by gravity?

Variables: Independent: Distance the ball rolls on the ramp.

Dependent: Time
Controlled: Angle of the ramp, length of the ramp, person timing, mass of the ball bearing, ball bearing itself, material of the ramp,

Hypothesis:

I think, when an object falls, the distance the it falls depends on the time in a
\qquad relationship.

How will you keep the controlled variables controlled? How will you change the independent variable? How will you measure the dependent variable?

Motion Notes:
Essential Question: How do we refer to the motion of objects in physics?

Distance: the measurement of how far or close an object is. Distance to the grocery store $=2 \mathrm{~km}$

1 km

When I walk to and from the grocery store Itravel $(2 \mathrm{~km}+2 \mathrm{~km}=4 \mathrm{~km}) 4 \mathrm{~km}$.
Displacement: change in position $=$ final position - Initial $!$ When we travel from the hobbit hole to Position The grocurystore our displacement is 2 km .

$$
\left\{\begin{array}{l}
\text { final Position - Initial Position } \\
X_{s}-X_{i} \\
2 \mathrm{~km}-0 \mathrm{~km}=2 \mathrm{~km}
\end{array}\right.
$$

When I travel from the grocery store to The hobbit hole my displaament is -2 km

$$
\left[\begin{array}{l}
x_{f}-x_{i} \\
0 k m-2 k m=-2 k m
\end{array}\right.
$$

When we trail to and from the grocery
store, our displamment is zero

$$
\left[\begin{array}{l}
x_{f}-x_{0} \\
0-0=0
\end{array}\right.
$$

Speed: the measurement of how fast something travels.

$$
\begin{aligned}
\text { Speed } & =\frac{\text { distance }(m)}{\text { Time }(s)} \quad S=\frac{Q}{t} \\
& \text { Units }=\frac{m}{s}
\end{aligned}
$$

Velocity: the rate at which an object changes position.

$$
\begin{aligned}
\text { Velocity }=\frac{\text { displaument }(m)}{\text { time }(s)} & V=\frac{\Delta x}{t} \\
\text { units: } \frac{m}{s} & \Delta x=x_{f}-x_{i}
\end{aligned}
$$

and direction

Move forward at a constant Speed, positive Constant position
veracity

 Walk toured Zero, constant negative velocity

The slope of a position vs. time graph is the velocity.

