Acceleration and Velocity as Arrows

acceleration tells us how much to change the velocity each second therefore, the velocity will change by $2 \mathrm{~m} / \mathrm{s}$ each second.

The slope of a Velocity vs. Time graph is the Acceleration The slope of a Distance vs. Time graph is the velocity.

A lacrosse player is sprinting at $6 \mathrm{~m} / \mathrm{s}$. She scores a goal and then slows down to high five her team mates

1. What would her distance vs. time graph look like?
$\frac{1}{t}$
2. Draw a velocity time graph for this motion

3. Distance VS time: Slope = velocity

Velocity vs. time graph: slope= acceleration

12. acceleration is the slope of a velocity time
 graph. we have a constant acceleration then there should be a constant slope to a V vs T graph.

Motion Lab 1:

Distance vs. Time graphs with a constant velocity: Relationship: Linear

Motion Lab 2:
Distance vs. Time graph with a Constant di, $^{\text {n }}$ Acceleration

$$
d=\frac{1}{2} a t^{2}
$$

When the time is doubled the distance is quadrupled.

Acceleration: A change in velocity over time.

$$
\begin{aligned}
& a=\frac{V_{f}^{\sim}-V_{i} \sim \text { initita dada }}{t \sim \text { Lime }} \quad a=\frac{\Delta V}{\Delta t} \\
& \text { Units: } \frac{\mathrm{m} / \mathrm{s}}{\mathrm{~s}}=\mathrm{m} / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2} \rightarrow \Delta=\text { delta }_{\mathrm{c}}=\text { change }_{\text {in }} \\
& \frac{\frac{m}{s} \cdot \frac{1}{s}}{\frac{1}{1} 5 \frac{1}{s}}=\frac{m}{s} \cdot \frac{1}{s}=\frac{m}{S \cdot S}=\frac{m}{s^{2}}
\end{aligned}
$$

