Getting Quantitative with Graphs

Look at the distance versus time. How long does it take the ball to fall 1.6 meters?
How long does the ball take to reach a speed of $1.0 \mathrm{~m} / \mathrm{s}$?
$t=? \quad V=10 \mathrm{~m} / \mathrm{s}$

Ball on Ramp Lab

C. Acceleration

$$
d=\frac{1}{2} a t^{2} \quad \begin{aligned}
& V=a t \\
& a=0.46
\end{aligned} \quad V=0.46 t
$$

$$
\begin{gathered}
\frac{1.0 \mathrm{c} / \mathrm{s}}{0.46 \mathrm{~m} / \mathrm{s}}=t \\
2.17 \frac{1}{\mathrm{~s}}=t \\
2.17 \mathrm{~s}=t
\end{gathered}
$$

Free Fall

Definition: when an object is falling and accelerating because of gravity. acceleration due to gravity: $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

How long will it take a ball to fall 5.5 m ?

$$
t=? \quad d=5.5 \mathrm{~m}
$$

