Solving Bakneed Torque Probs

$$
\tau=F \cdot r \cdot \sin \theta
$$

$$
\begin{aligned}
& \text { The angle } \\
& \text { between Fir }
\end{aligned}
$$

Ex 1

If I apply a 10 N force when should I apply it? $r_{2}=$?

$$
\begin{gathered}
\sum \tau=0 \\
F_{1} \cdot r_{1}-F_{2} \cdot r_{2}=0 \\
4 \mathrm{~N}(1.5 \mathrm{~m})-10 \mathrm{~N} \cdot r_{2}=0 \\
6 \mathrm{~N} \cdot \mathrm{~m}=10 \mathrm{~N} \cdot r_{2} \\
0.6 \mathrm{~m}=r_{2}
\end{gathered}
$$

Units for Torque [N.m]

$$
E \times 2
$$

 apply at The very end to kep It balanced?
Gravity acts as if it is only pulling at the center of a symmetric object. (CM)

$$
\left.F_{g}=m g_{10 \mathrm{~N} / \mathrm{ks})}\right)=50 \mathrm{~N}
$$

for r : Distance from $=$ The pivot is what we cars about

$$
\begin{gathered}
\sum \tau=0 \\
50 N(1 \mathrm{~m})+(20 \mathrm{~N})(2 \mathrm{~m})-F_{?} \cdot 1 \mathrm{~m}=0 \\
50 \mathrm{~N} \cdot \mathrm{~m}+40 \mathrm{~N} \cdot \mathrm{~m}=F_{\square} \cdot 1 \mathrm{~m} \\
90 \mathrm{~N}=F_{?}
\end{gathered}
$$

$$
\begin{aligned}
& \sum L=0 \\
& 20 N(2 m)+3 N(4 m) \sin (30)-F_{?} \cdot(4 m)=0 \\
& 40 \mathrm{~N} \cdot \mathrm{~m}+6 \mathrm{~N} \cdot \mathrm{~m}=4 \mathrm{~m} \cdot \mathrm{~F}_{\text {? }} \\
& \frac{46}{4} N=F \text { ? }
\end{aligned}
$$

Ex प)

- you define your pivot point \rightarrow choose it wisely so that you can eliminate $9 T \longrightarrow$

