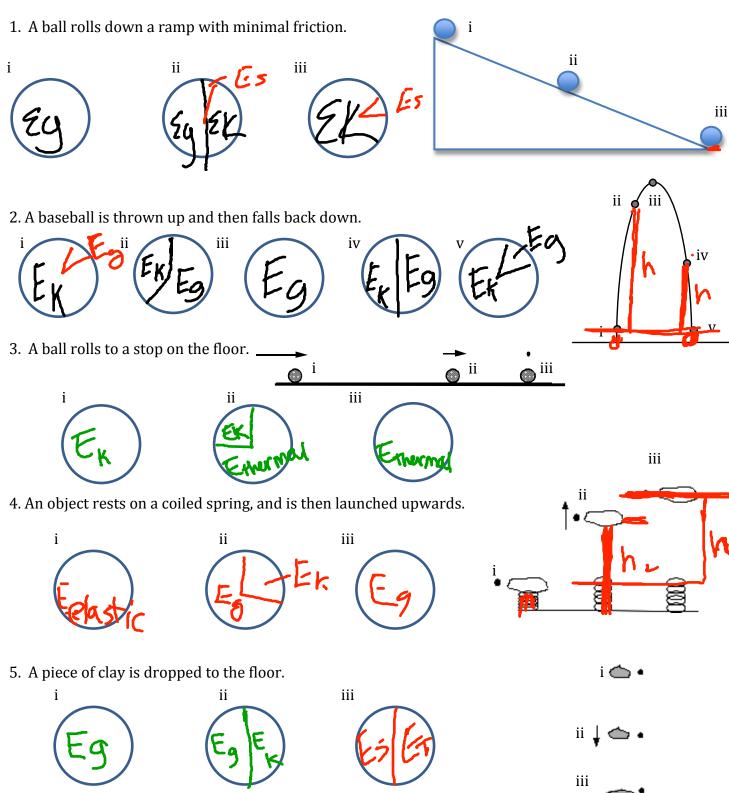

Unit 4: Intro to Energy								
Name:		Period:	Date: _.					
	Homework :		Due Date					

Vocabulary	Sentence that correctly uses the word	Pattern, Diagram, or Equation
Energy		
Kinetic Energy		
Gravitational Potential Energy		
Energy Transfer		
Energy Transformation		
Work		
Power		

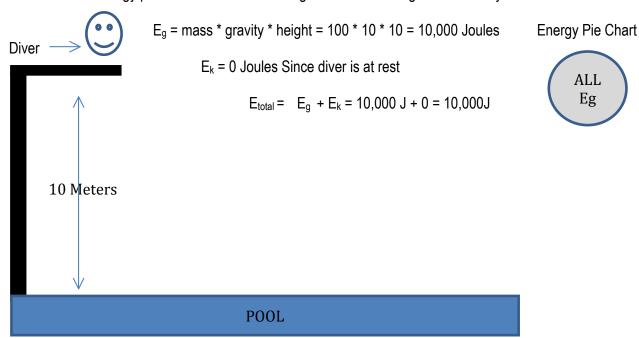
For questions 1 – 6 compete the four representations for the four patterns below.

5. Compare and Contrast important aspects of E_k and E_g :

Compare (similarities):


Contrast (differences)

- 6. Ranking Task: Rank the vehicles in order of total energy:
 - a. a Tesla Roadster (2000 kg) speeding 40 m/s down a closed track at sea level.
 - b. a semi-truck (10000 kg) stopped at a rest stop 60 m above sea level.
 - c. a Cadillac (2500 kg) cruising down a highway 20 m/s at sea level.


18 2 A > C 2

Energy Storage (pie) Charts

 \diamond The pies should be accurately sized, divided and labeled with the energy storage mechanisms involved: ($E_{kinetic}$, E_{sound} , $E_{thermal}$, $E_{gravitational}$, $E_{elastic}$, $E_{chemical}$).

For the following problem we will assume that a diver (100 kg) is standing atop a 10 meter tall diving board. The diver then jumps from the tower into the pool below. For the heights specified below, find the E_g and E_k of the diver. Also create an energy pie chart for each of the heights. The initial height is done for you.

At height 8 meters above the pool

$$E_g =$$

$$E_k =$$

$$E_{total} =$$

Energy Pie Chart

At height 5 meters above the pool

$$E_k =$$

The instant before hitting the water

$$E_g =$$

$$E_{total} =$$

Problem Solving with Energy & Energy Transfer

A student pulls a block up ramps of various lengths using a spring scale. Each ramp gets up to the same height, but has a different length. Their data is logged below. Complete the data table using correct concepts of work

• __

Force pull (N)	Force Friction (N)	Distance Ramp (m)	Energy transferred into cart by pull Work _{pull} =	Energy transferred to Thermal Energy (J) Work _{Friction} =	Net Energy transferred to cart (J) E _{net} =	Energy Transferred to E_g (J) $E_g = mgh$
16	11.0	10	•			50
19	9.0	5				50
20	7.5	4				50
32	7.0	2				50
55	5.0	1				50

Generating and Analyzing Graphs of Energy

1. The Engineering Club constructs an essentially frictionless large wind turbine and uses some string to hang a 2 kg load from the wind turbine's axle. As the mass falls the string begins to turn the axle causing the wind turbine blades to actually make 1 kg of air start moving – that is, it creates some wind. Draw a diagram, including Energy Pie Charts, the energy transformations and transfers below:

2. Complete the table to the right for this situation assuming all of the kinetic energy in the blades gets transferred immediately to the air (wind).

Height of Load (m) +/- 0.2	E _g Gravitational Potential Energy of Wind Turbine (J) +/- 4 E _g =	E _K Kinetic Energy Transferred to the Wind (J) +/- 4 E _k = E _k =	E_T Total Energy of the System (J) +/- 4 $E_T =$	Velocity of the Wind (m/s) +/- 0.2
1.8	36			0
1.6		4		
.0 🕜			36	

E_T , E_g , E_K (J)					

h (m)

2. Using the technical terminology *energy transformation* and *energy transfer* describe how energy is conserved as the 2 kg load falls.

3. More realistically, the wind turbine would likely have some friction. Explain how and why the data table above would change using the following terms and concepts: E_t (thermal energy), E_T (Total energy), E_k , E_g , and conservation of energy, velocity of the wind.