Introduction to LoggerPro- Email me all graphs on a single sheet of paper!
Word document needs names of everyone in the group, and each graph, best-fit line and equation clearly visible.

Scenario A: Plot the following data set collected from a car traveling at a constant speed of $5 \mathrm{~m} / \mathrm{s}$.

1. Write the equation for the best-fit line of this graph:
2. Use the graph (by changing the scale of the axes) to determine the distance the car would travel in 16 s?
3. Use the equation for the best-fit line to determine the distance the car would travel in 200 s ?

Time (s) 0.1	Distance Travelled by Car $(\mathrm{m}) \pm 1$
0.0	0
1.0	5
2.0	10
3.0	15
4.0	20
5.0	25

Scenario B: Plot the following data gathered as a ball was dropped from rest from a cliff.
4. Write the equation for the best-fit line of this graph:
5. Use the equation for the best-fit line to determine the distance the ball will fall in 9 s ? $\mathrm{d}=$ \qquad
6. Use the equation for the best-fit line to determine the time it would take the ball to fall 200 m ? $\mathrm{t}=$ \qquad
7. Use the graph (by changing the scale of the axes) to determine the time it would take the ball to fall 200 m ? $\mathrm{t}=$ \qquad

Time $(\mathrm{s}) \pm 0.2$	Distance Ball fell from Cliff $(\mathrm{m}) \pm 0.5$
0.0	0.0
1.0	5.0
2.0	20.0
3.0	45.0
4.0	80.0
5.0	125.0

8. Explain between the equation method or graph method which was easier to determine the time it would take the ball to fall 200 m ?

Scenario C: Plot the following data for a car that was moving at $30 \mathrm{~m} / \mathrm{s}$ and then suddenly hit the brakes.
9. Write the equation for the best-fit line of this graph:
10. When will the car stop? $t=$ \qquad
11. Where on the graph did you determine this?
12. Explain the meaning of the y-intercept of $30 \mathrm{~m} / \mathrm{s}$.

Average Time $(\mathrm{s}) \pm 0.3$	Speed of Car $(\mathrm{m} / \mathrm{s}) \pm 0.5$
0.0	30.0
1.0	25.0
2.0	20.0
3.0	15.0
4.0	10.0

13. Determine when the car is going $23 \mathrm{~m} / \mathrm{s}$? $\mathrm{t}=$ \qquad
