Resolving Forces

Name	Period:
------	---------

- 1. Pippin and Merry both push a 5.0 kg box of fire works to the party. Merry pushes with a 3N force directly east, Pippin pushes with a 4N force at a 30 degree angle to Merry.
 - a. Draw a free body diagram
 - b. What is the net force in the x direction on the box?
 - c. What is the net force in the y direction on the box?
 - d. What is the acceleration in the x direction of the box?
 - e. What is the acceleration in the y direction of the box?
 - f. What is the magnitude of the acceleration of the box?
 - g. What is the magnitude of the net force on the box?
 - h. What direction is the net force?

2. A body is pulled across frictionless ice by 3 ropes exerting forces as shown. Find the net force on the object. (Use the bashed line as a reference line. Calculate the components of the forces in that direction and perpendicular to it. Add them up.)

- 3. A 10. Kg mass is resting on a ramp with an inclination angle of 30 degrees.
 - a. Draw a Free Body Diagram (remember to rotate the diagram). Mark your angles clearly
 - b. Use Newton's second law to write an equation for the acceleration in the x-direction.
 - c. Use Newton's law to write an equation for the acceleration in the y-direction.
 - d. Find the magnitude of the acceleration of the block down the ramp.

