Rotational Energy and Momentum 1 (8836401)

Instructions

Note, the moment of inertia of a ring with some thickness is: $1/2 * m * (Inner radius^2 + m) * (Inner radius^2 + m) * (Inner radius^3 + m) * (Inner radius^4 +$ Outer radius^2)

1.

0/1 points OSColPhys1 10.4.024. [3346537]

Calculate the rotational kinetic energy in the motorcycle wheel (figure) if its angular velocity is 140 rad/s. Assume M = 16.0 kg, $R_1 = 0.240 \text{ m}$, and $R_2 = 0.340 \text{ m}$.

Additional Materials Reading

3. OSColPhys1 10.5.038. [3346544]

Suppose you start an antique car by exerting a force of 470 N on its crank for 0.270 s. What angular momentum is given to the engine if the handle of the crank is 0.320 m from the pivot and the force is exerted to create maximum torque the entire time?

4. 0/3 points OSColPhys1 10.5.041. [2153820]

(a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given h	is moment of inertia is $0.350 \text{ kg} \cdot \text{m}^2$.
X 13.2 kg · m²/s	specing his magnest of inaction Find the
(b) He reduces his rate of spin (his angular velocity) by extending his arms and incr value of his moment of inertia if his angular velocity drops to 2.05 rev/s.	easing his moment or inertia. Find the
X № 1.02 kg·m²	
(c) Suppose instead he keeps his arms in and allows friction with the ice to slow him	n to 3.00 rev/s. What average torque
was exerted if this takes 20.0 seconds?	
× 2 -0.33 N·m	
Additional Materials	
Reading	

Assignment Details

Name (AID): Rotational Energy and Momentum 1 (8836401)

Submissions Allowed: 10 Category: Homework

Code: Locked: No

Author: Steinkamp, Alex (asteinkamp@osd.wednet.edu)

Last Saved: Mar 22, 2016 03:37 PM PDT

Group: AP Phys 1 Randomization: Person Which graded: Last

Feedback Settings Before due date

Question Score Assignment Score

Publish Essay Scores

Question Part Score

Mark

Add Practice Button

Help/Hints Response

Save Work

After due date

Question Score

Assignment Score

Publish Essay Scores

Key

Question Part Score

Solution

Mark

Add Practice Button

Help/Hints Response