Instructions
Note, the moment of inertia of a ring with some thickness is: \(\frac{1}{2} \) m * (Inner radius\(^2\) + Outer radius\(^2\))

1. 0/1 points OSColPhys1 10.4.022. [2153308]

 What is the final velocity of a hoop that rolls without slipping down a 4.00 m high hill, starting from rest?

 [2.68 m/s]

 Additional Materials

 Reading

2. 0/1 points OSColPhys1 10.4.024. [3346537]

 Calculate the rotational kinetic energy in the motorcycle wheel (figure) if its angular velocity is 140 rad/s. Assume

 \(M = 16.0 \) kg, \(R_1 = 0.240 \) m, and \(R_2 = 0.340 \) m.

 [3600 J]

 Additional Materials

 Reading
3. 0/1 points
Suppose you start an antique car by exerting a force of 470 N on its crank for 0.270 s. What angular momentum is given to the engine if the handle of the crank is 0.320 m from the pivot and the force is exerted to create maximum torque the entire time?

\[\text{Angular momentum} = \text{force} \times \text{distance} = 470 \text{ N} \times 0.320 \text{ m} = 149.6 \text{ kg} \cdot \text{m}^2/\text{s} \]

Additional Materials
Reading

4. 0/3 points
(a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.350 kg\cdot m^2.

\[\text{Angular momentum} = \text{moment of inertia} \times \text{angular velocity} = 0.350 \text{ kg} \cdot \text{m}^2 \times 6.00 \text{ rev/s} = 2.10 \text{ kg} \cdot \text{m}^2 \cdot \text{rev} \]

(b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity drops to 2.05 rev/s.

\[\text{Moment of inertia} = \frac{\text{Angular momentum}}{\text{Angular velocity}} = \frac{1.02 \text{ kg} \cdot \text{m}^2 \cdot \text{rev}}{2.05 \text{ rev/s}} = 0.500 \text{ kg} \cdot \text{m}^2 \]

(c) Suppose instead he keeps his arms in and allows friction with the ice to slow him to 3.00 rev/s. What average torque was exerted if this takes 20.0 seconds?

\[\text{Average torque} = \frac{\text{Angular momentum}}{\text{Time}} = \frac{0.330 \text{ N} \cdot \text{m}}{20.0 \text{ s}} = 0.0165 \text{ N} \cdot \text{m/s} \]

Additional Materials
Reading